Hunting at Vale EFC

Case study of bogie hunting at Vale EFC between 2009 to 2017, and the inter-relationship between track and rollingstock

Paul Bladon, Denis D'Aoust, Pedro Freire

Acknowledgements

Wayside Inspection Devices Inc (WID) would like to thank the following contributors:

- Pedro Freire, Vale
- Jun Kina, Vale
- Evgeny Adanichkin, Track IQ

Vale EFC (São Luís Line)

Vale EFC (São Luís Line)

Carajás Railway:

- The line is 892 km long, TR68 (136 lbs)
- Broad gauge 1.60m, rail head profile unchanged since 2009
- Runs from Carajás Mine to São Luís Port
- Carajás Mine is largest iron ore mine in the world

Rolling Stock:

- Iron ore trains typically 330 cars long, sometimes 340
- Axle load = 31.5-37.5 tonnes
- Loaded trains = 41,000 tonnes
- Trains use 2x1x1 or 1x1x1 loco set up

Vale EFC (São Luís Line)

Photographs copyright Nicolas Fagundes and reproduced courtesy of RailPictures.Net

São Luís Line - Brazil

Wheel-Rail Interface Data

Wheelset Based

Truck Based

Wheel-Rail Interface Data

TBOGI-HD system collecting data since September 2009 since then:

- 1. Unexpected patterns in the data at a population level
- 2. How do patterns correlate with changes in rollingstock, track maintenance, wheel wear and rail wear?
- 3. How did the inter-relationship between track degradation and rollingstock degradation manifest?

Wheel-Rail Interface Data

Trucks used at Vale EFC:

- Ride Control with frame brace (GDTs and GDUs)
- Ride Control without frame brace (GDTs)
- Ride Control with pads and without braces (GDTs and a small number of GDUs)
- Motion Control Barber, pads integrated with bearing adapters (GDU)
- S2E Barber with split wedges and pads (GDUs only)
- S2R Barber with pads (small number of GDTs)

WRI 2017

2009 - 2011

2009 - 2011

Pre-2010 rail replaced with rail that had shorter life and was prone to vibration

2009 - 2011

GDU bogies began entering the fleet

WRI 2017

Pre-2010 rail replaced with rail that had shorter life and was prone to vibration

2009 - 2011

GDU bogies began entering the fleet

Peak-to-Peak

Observations: 2009-2011

- 1. Average degradation rate for hunting defects was 14 months
- 2. Degradation trends typically not steep, were manageable by rolling stock maintenance
- 3. There were still some steep trends degradation within 1 month that required quicker intervention
- 4. Hunting degradation predominantly manifesting when cars empty, which is normal for heavy-haul

2012 - 2013

2012 - 2013

Manual grinding/tamping, and sleeper leveling

2012 - 2013

Replaced previous rail (25m sections) with better quality rail in longer lengths (250m sections)

March 2012

Manual Grinding

1st Intervention Manual Maintenance

Manual Tamping

Manual track maintenance

Manual grinding/tamping, and sleeper leveling

2012 - 2013

Replaced previous rail (25m sections) with better quality rail (250m sections)

March 2013

Rail replacement with better quality rail

Observations: 2012-2013

- 1. Predominantly GDT bogies that experienced repeat hunting
- 2. Degradation time for gradual-onset defects reduced from average of 14 months to average of 7 months
- 3. Bogies that experienced sudden-onset loaded hunting were different bogies to those that experienced gradual-onset empty hunting
- 4. Sudden-onset and gradual-onset hunting defects continued degrading without significant changes in speed (per bogie)

2014 - 2015

Manual grinding/tamping, and sleeper leveling

2014 - 2015

Major track overhaul:
Replaced rail, ballast
cleaning/renewal,
mechanical tamping
and leveling

Plus a bogie

maintenance regime focused on the extreme defects

Observations: 2014-2015

- 1. Still predominantly GDT bogies experiencing repeat hunting
- 2. Vale noticed frame braces starting to break in 2014, and significant increase in twisted/broken frame braces in 2015. Also marked increase in asymmetrical wear in wheelsets.
- 3. Hunting bogies divided into three main types:
 - a) Gradual-onset defects when empty
 - b) Gradual-onset defects when loaded
 - c) Sudden-onset defects when loaded

Type (a): Gradual-onset defects when empty
Continued developing much as before, but increased rate of incidence

Type (b): Gradual-onset defects when loaded

Type (c): Sudden-onset defects when loaded

Observations: 2014-2015

- Almost always, a bogie that develops a gradual-onset hunting will do so in either empty, or loaded condition, but not in both
- Sudden-onset hunting developed in loaded condition
- Gradual-onset defects typically reached significantly higher severity levels than sudden-onset defects:
 - Gradual-onset defects continued upwards toward and beyond 35 mm
 - Sudden-onset defects were typically asymptotic to ~21-28 mm

Observations: 2014-2015

- The main wear on the rail prior to Nov-Dec 2015 was surface shelling experienced much more RCF than wear
- Rail replaced in Mar 2013 and Nov-Dec 2015 - difference in 2015 was that also sleeper and fixings renewal, ballast maintenance, renewal, and levelling

Was the rail change in Nov-Dec 2015 the panacea it appears to be?

Yes and no: it was only part of the solution

With the WRI, it is almost never just one thing

During the same window of time, Vale repaired a lot of the trucks with extreme hunting

2016 - 2017

2016 - 2017

Observations: 2016-2017

- Loaded hunting: back to normal with specific trucks degrading,
 and no longer an indication of a population-level issue
- Empty hunting: back to normal with specific trucks degrading,
 but indication that a subset of trucks are hunting badly at higher speeds
- Empty hunting severity is non-linear in response to speed: a small increase in speed can correspond to a much greater increase in hunting severity (if a bogie is already unstable)

Overall 2009 - 2017

Observations: General

- Gradual-onset defects indicates specific bogies, and individual trends are steeper when the track condition is deteriorating
- Sudden-onset defects with population shift in the incidence of defects, indicates a lowered tolerance of that population of bogies to a common condition (in this case, the track)

Supersite Data

With the assistance of Track IQ, it was possible to compare the TBOGI-HD data with data from other systems at the site:

- WCM: Wheel impact data (Track IQ)
- WheelSpec II: Wheel profile data (Mermec)
- RailBAM: Bearing acoustic data (Track IQ)

Information retrieved from Track IQ Data System (WMS)

Supersite Data

What does it mean?

The Wheel-Rail Interface is a relatively Closed System

Things do not happen in isolation

What does it mean?

Excerpt from Bladon, K., Rennison, D., Izbinsky, G., Tracy, R. and Bladon, T., 2004, Predictive Condition Monitoring of Railway Rolling Stock. In: CORE 2004: New Horizons for Rail. Darwin, N.T.: Railway Technical Society of Australasia (RTSA), 22.1-22.12.

What does it mean?

Excerpt from T. Liu, T., Bladon, P., D'Aoust, D., 2016. Expanding the Scope of Bogie Performance Detectors. In: International Wheelset Congress. Chengdu, China. IWC2016, Nov 2016.

Conclusion

Vale demonstrates different uses of the data:

- Identify specific bogies that are experiencing accelerated degradation due to trendable defects
- Warn of population-level issue by identifying a gross shift in a particular type(s) of defect

